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Innovative hardware for rapidly
solving optimization problems

The rise of AI, graphic processing, combinatorial optimization and other data-
intensive applications has resulted in data-processing bottlenecks, as ever greater
amounts of data must be shuttled back and forth between the memory and compute
elements in a computer. The physical distance is small, but the process can occur
billions of times per second. Inevitably, the energy and time required to move so
much data adds up. In response, computer engineers are designing specialized
hardware accelerators with innovative architectures to improve the performance of
such applications.

Prior efforts to develop hardware for optimization problems have involved Ising
machines, a category of hardware solvers that incorporate the Ising model to find
the absolute or approximate “ground state,” as in, the energy minimum. Until now,
hardware architectures for Ising machines could efficiently solve problems with
quadratic polynomial objective functions but were not scalable to increasingly
relevant higher-order problems, such as protein folding, electronic-structure
prediction, AI-model verification, circuit routing, fault diagnosis and scheduling. 

Conducting research in this area is Tinish Bhattacharya, a doctoral student in the UC
Santa Barbara lab of electrical and computer engineering professor Dmitri Strukov.
He and several industry collaborators, along with academic colleagues in Europe and
industrial collaborator Hewlett Packard Labs, have developed specialized function
gradient computing hardware to accelerate the rate at which complex high-order



optimization problems can be solved. A paper describing their work, “Computing
High-degree Polynomial Gradients in Memory,” appeared in the journal Nature
Communications. “The objective function of any optimization problem, such as an AI
workload, represents an N-dimensional ‘energy landscape,’ where each combination
of variable values represents a unique point in that landscape,” Bhattacharya said,
noting, “The goal is to find the set of variable assignments that corresponds to the
lowest — or more generally, as close as possible to the lowest — point in that
landscape.”

By way of a parallel, he suggests an actual landscape. “Imagine yourself high in the
Sierra Nevada mountains, and your objective is to find the lowest point in a given
area, as quickly as possible and with the least possible effort. To achieve that,
obviously, you will follow the steepest downward slope. The information about the
steepness and the direction in which the steepest slope lies with respect to where
you are standing is given by the function’s gradient at that point. You proceed by
taking incremental steps and recalculating the gradient after each one to confirm
that you’re still on the steepest slope.” This example posits a three-dimensional
landscape that could be represented by x, y and z axes, and the gradient calculation
is relatively simple. Practical optimization problems, however, may have hundreds of
thousands of variables.

“The gradient calculation operation is performed iteratively, over and over, and we
need to be able to do it fast and efficiently,” he added.

 

According to Battacharya, much of the currently proposed, state-of-the-art hardware
for solving these kinds of issues are limited to second-order problems. The main
benefit of their hardware, he noted, is that it can solve problems like Boolean
Satisfiability in their native high-order space without having to do any pre-
processing, potentially providing exponential speedup over current hardware
architectures that are limited to second-order objective functions.

 

How they do it

https://www.nature.com/articles/s41467-024-52488-y
https://www.nature.com/articles/s41467-024-52488-y


A key element of the new hardware is its ability to perform in-memory computing,
within the memory array itself, mitigating the bottleneck that results from moving
vast amounts of data back and forth between memory and processor in a classic
computer. The researchers accelerate operations by performing matrix vector
multiplication, the mathematical operation behind the gradient-computation step, by
using crossbar arrays of specialized memristor devices.

The great advantage of in-memory computing is that it can be done in a time
independent of the size of the matrix. It always requires only one step, with no
shuttling of data back and forth, dramatically reducing the time to solve.

The hardware consists of crossbar memories — actual raised surfaces lithographed
onto the chip — where several word lines (wires) run horizontally and several bit
lines run vertically. Placing a memristor at every location where a word line and a bit
line intersect, with one terminal of the device connected to the word line and the
other to the bit line, forms a memristor crossbar array. The matrix encoding the
problem is stored in the states of these memristors. The vector is applied as
proportional read pulses on the word lines. The resulting currents, which flow in the
bit lines, then depict the result of the vector-matrix multiplication. 

The core innovation that enables gradient computation of high-order polynomials in
the native (high-order) space is using two such crossbar arrays back to back. Both
crossbars store the matrix depicting the high-order polynomial. The first crossbar
computes the high-order monomials of the polynomial. The second crossbar uses
this result as its input to compute the high-order gradient for all the variables in
each of its bit lines.

This “massively parallel” element of the group’s approach is key to their success.
“By that, we mean that our hardware can compute the gradients for each of those
variables at the same time, rather than sequentially, as a lot of current hardware
does,” Bhattacharya said. “That's the optimization, in one respect, the fact that we
have retained that massively parallel property even when going to that high-order
space.”

From an algorithmic point of view, the ability to optimize a native high-order
function, as opposed to the reduced second-order version, can result in a speed
advantage of nearly two orders of magnitude for problems having only 150
variables. That is still an order of magnitude smaller than most practically relevant
problems encountered in real-world scenarios, and the speed advantage is expected



to increase exponentially with the addition of more variables.
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