Jonathan Balkind receives NSF Early CAREER Award to improve cloud-based computing

Employing a technique called microarchitectural checkpointing to redesign computer processors for cloud-based serverless computing — a new paradigm favored by cloud developers — Jonathan Balkind is developing a new application for cloud computing. An assistant professor of computer science at UC Santa Barbara, he is doing so with funding from the National Science Foundation, by way of a five-year, $630,000 NSF Early CAREER Award.

“It’s really an honor to receive the CAREER award,” Balkind said. “This is my first funded NSF proposal and was the first time I made a submission for the CAREER. I’ve had to pinch myself at least once to believe that it really happened. I’m looking forward to driving this project over the next five years.”

The long and short of application run times

While applications created for servers run for up to weeks at a time, the new serverless apps run for as little as a hundredth of a millisecond — meaning many existing processor technologies cannot keep up.

“We have spent several decades optimizing processors for long-lived applications, so that the processor could learn their behavior over time in order to predict future
behavior and, thus, operate more efficiently,” Balkind explained. “With today’s very
short-running applications, like those in serverless, there simply isn’t enough time
for our processors to learn the behavior. This makes it inefficient to run serverless
applications on existing servers.

“But with microarchitectural checkpointing,” he continued, “you save what you learn
each time the application runs, and then when you run it again later, you retrieve
what you saved and then save at the end of that step, and so on. The result is that
the processor learns only what it needs to, across instances of the application over
time. The checkpointed information from each application is siloed, so you avoid
polluting the information from one application with that of another. We will use
microarchitectural checkpointing to improve the efficiency of serverless apps.”

Open-sourcing a customized serverless processor

Key to Balkind’s CAREER award research is the OpenPiton platform, which he will
use to enable prototyping for his open-source framework for building processors.
“We have a design for a processor,” he said, “and people can make modifications to
it, either to add a feature they want or to test things as they change the parameters
of that processor, such as the number of cores or the amount of cache.”

The system has evolved from work that began in 2013, when Balkind and fellow
Princeton University Ph.D. students designed it to serve as a research platform that
would enable users to add their own components to validate particular research
ideas. “We give out just about every component that's needed to design a new
processor, and as a result, we've seen users be very productive — more than 60
research projects have used the platform,” he said. Additionally, a number of
companies have adopted OpenPiton, including Intel, which used the platform to
develop an 8-core processor chip to demonstrate the effectiveness of its new
fabrication facilities.

Balkind is a significant contributor to the open-source hardware space, where, he
said, “We’re providing these designs and trying to build a community and make
better products in the future.” He received an Open Source Hardware Association
Trailblazer Fellowship for his work in that field.

Making and customizing processors for specific applications is an important part of
the evolution of computing. “In industry, companies routinely customize their
processors for new applications as they emerge,” Balkind said. His proposal for
microarchitectural checkpointing will be demonstrated as a customization of
OpenPiton, which can benefit serverless applications. By open-sourcing this
processor design and providing a concrete implementation of the idea, he and his
team hope that it will see easier adoption into other industrial processors.

On-demand cloud computing

“If you’re a developer, there are lots of ways for you to write an app,” Balkind noted.
“But if your app suddenly gets discovered, and you have, almost instantaneously, a
million users a week, you need to have the flexibility to go from one server to 10,000
servers handling your requests. Serverless computing is specifically designed to do
this for you.”

Around 2016, Amazon and other companies discovered that they were using only
about 65% of their data-center capacity, leaving about one-third of the resource
unused. Amazon responded by inventing a paradigm that would be easy to program
and make it possible to scale up and down at a moment’s notice. “So, the NFL
moved a bunch of their web serving to this paradigm, because they have two or
three days a week when everyone uses the website, and the rest of the time it’s
much quieter,” Balkind said. “It’s the same with banks. At the end of the month,
customers scan their paycheck to deposit with their phone, causing a huge spike in
demand that lasts three days a month. Spikes also occur that can’t be predicted.”

The hope is that not too many demand spikes occur at once, so that there is an even
distribution of usage over time.

The system makes sense, but there’s a catch: the additional, previously unused 35%
of capacity that Amazon and other cloud providers had available isn’t as reliable as
the heavily used 65%.

“They can’t guarantee you’ll get good performance when your app runs,” Balkind
said. “To make up for that, they sell a plan that allows you to pay for only the time
when your application is running, whereas, normally, you pay even when it’s idle. If
you’re a small-scale start-up developer and you have no demand, it’s OK; you pay
nothing. As people start to use your service, you pay in a way exactly
commensurate with your usage.”

Amazon was the first to do this, with its Lambda platform. “Once they did it,
everyone else followed,” Balkind said. “The problem, however, is that for each
individual request, it turns out they’re not getting great service — one command
might run instantaneously, and the next might take 30 seconds. That’s what we’re trying to improve.”

Media Contact

Shelly Leachman
(805) 893-2191
shelly.leachman@ucsb.edu

About UC Santa Barbara

The University of California, Santa Barbara is a leading research institution that also provides a comprehensive liberal arts learning experience. Our academic community of faculty, students, and staff is characterized by a culture of interdisciplinary collaboration that is responsive to the needs of our multicultural and global society. All of this takes place within a living and learning environment like no other, as we draw inspiration from the beauty and resources of our extraordinary location at the edge of the Pacific Ocean.