
September 25, 2017
James Badham

Band Gaps, Made to Order

Control is a constant challenge for materials scientists, who are always seeking the
perfect material — and the perfect way of treating it — to induce exactly the right
electronic or optical activity required for a given application.

One key challenge to modulating activity in a semiconductor is controlling its band
gap. When a material is excited with energy, say, a light pulse, the wider its band
gap, the shorter the wavelength of the light it emits. The narrower the band gap, the
longer the wavelength.

As electronics and the devices that incorporate them — smartphones, laptops and
the like — have become smaller and smaller, the semiconductor transistors that
power them have shrunk to the point of being not much larger than an atom. They
can’t get much smaller. To overcome this limitation, researchers are seeking ways to
harness the unique characteristics of nanoscale atomic cluster arrays — known as
quantum dot superlattices — for building next generation electronics such as large-
scale quantum information systems. In the quantum realm, precision is even more
important.

New research conducted by UC Santa Barbara’s Department of Electrical and
Computer Engineering reveals a major advance in precision superlattices materials.
The findings by Professor Kaustav Banerjee, his Ph.D. students Xuejun Xie, Jiahao
Kang and Wei Cao, postdoctoral fellow Jae Hwan Chu and collaborators at Rice
University appear in the journal Nature Scientific Reports.

https://nrl.ece.ucsb.edu/people/banerjee
https://www.nature.com/articles/s41598-017-08776-3


Their team’s research uses a focused electron beam to fabricate a large-scale
quantum dot superlattice on which each quantum dot has a specific pre-determined
size positioned at a precise location on an atomically thin sheet of two-dimensional
(2-D) semiconductor molybdenum disulphide (MoS2). When the focused electron
beam interacts with the MoS2 monolayer, it turns that area — which is on the order
of a nanometer in diameter — from semiconducting to metallic. The quantum dots
can be placed less than four nanometers apart, so that they become an artificial
crystal — essentially a new 2-D material where the band gap can be specified to
order, from 1.8 to 1.4 electron volts (eV).

This is the first time that scientists have created a large-area 2-D superlattice —
nanoscale atomic clusters in an ordered grid — on an atomically thin material on
which both the size and location of quantum dots are precisely controlled. The
process not only creates several quantum dots, but can also be applied directly to
large-scale fabrication of 2-D quantum dot superlattices. “We can, therefore, change
the overall properties of the 2-D crystal,” Banerjee said.

Each quantum dot acts as a quantum well, where electron-hole activity occurs, and
all of the dots in the grid are close enough to each other to ensure interactions. The
researchers can vary the spacing and size of the dots to vary the band gap, which
determines the wavelength of light it emits.

“Using this technique, we can engineer the band gap to match the application,”
Banerjee said. Quantum dot superlattices have been widely investigated for creating
materials with tunable band gaps but all were made using “bottom-up” methods in
which atoms naturally and spontaneously combine to form a macro-object. But those
methods make it inherently difficult to design the lattice structure as desired and,
thus, to achieve optimal performance.

As an example, depending on conditions, combining carbon atoms yields only two
results in the bulk (or 3-D) form: graphite or diamond. These cannot be ‘tuned’ and
so cannot make anything in between. But when atoms can be precisely positioned,
the material can be designed with desired characteristics.

“Our approach overcomes the problems of randomness and proximity, enabling
control of the band gap and all the other characteristics you might want the material
to have — with a high level of precision,” Xie said. “This is a new way to make
materials, and it will have many uses, particularly in quantum computing and



communication applications. The dots on the superlattice are so close to each other
that the electrons are coupled, an important requirement for quantum computing.”

The quantum dot is theoretically an artificial “atom.” The developed technique
makes such design and “tuning” possible by enabling top-down control of the size
and the position of the artificial atoms at large scale.

To demonstrate the level of control achieved, the authors produced an image of
“UCSB” spelled out in a grid of quantum dots. By using different doses from the
electron beam, they were able to cause different areas of the university’s initials to
light up at different wavelengths.

“When you change the dose of the electron beam, you can change the size of the
quantum dot in the local region, and once you do that, you can control the band gap
of the 2-D material,” Banerjee explained. “If you say you want a band gap of 1.6 eV,
I can give it to you. If you want 1.5 eV, I can do that, too, starting with the same
material.”

This demonstration of tunable direct band gap could usher a new generation of light-
emitting devices for photonics applications.
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